Premature Ovarian Failure Panel

SEQmethod-seq-icon Our Sequence Analysis is based on a proprietary targeted sequencing method OS-Seq™ and offers panels targeted for genes associated with certain phenotypes. A standard way to analyze NGS data for finding the genetic cause for Mendelian disorders. Results in 21 days. DEL/DUPmethod-dup-icon Targeted Del/Dup (CNV) analysis is used to detect bigger disease causing deletions or duplications from the disease-associated genes. Results in 21 days. PLUSmethod-plus-icon Plus Analysis combines Sequence + Del/Dup (CNV) Analysis providing increased diagnostic yield in certain clinical conditions, where the underlying genetic defect may be detectable by either of the analysis methods. Results in 21 days.

Test code: EN0901

The Blueprint Genetics Premature Ovarian Failure Panel is a 13 gene test for genetic diagnostics of patients with clinical suspicion of premature ovarian failure.

Premature ovarian failure (POF) has monogenic/familial inheritance in 10%-30% of cases. The inheritance can be autosomal recessive, dominant or X-linked. In addition to premature ovarian failure, this Panel has differential diagnostics power to other phenotypes such as ovarian hyperstimulation syndrome, Malouf syndrome, aromatase deficiency, blepharophimosis, ptosis and epicanthus inversus syndrome (BES) and POLG-related disorders.

About Premature Ovarian Failure

POF is a heterogenous group of disorders characterized by absence of menarche or premature depletion of ovarian follicles before the age of 40 years. The most severe forms, where also pubertal development is severely affected, are often due to total ovarian dysgenesis, whereas post-pubertal menstrual cycle disappearance marks often clinically milder forms with earlier than normal depletion of follicles. Regardless of primary cause, patients with POF have often lower than normal levels of gonadal hormones and higher than normal levels of gonadotropins. POF causes infertility, which, however is not absolute in all patients. In addition, associated hormone dysbalance may lead to premature aging in several tissues. Therefore, the risk of osteoporosis and osteopenia as well as predisposition to cardiovascular and neurological diseases are increased. It is estimated that 1:10 000 women less than 20 years of age, 1:1 000 women less than 30 years of age and 1:100 of women less than 40 years of age suffer from POF.

Availability

Results in 3-4 weeks. We do not offer a maternal cell contamination (MCC) test at the moment. We offer prenatal testing only for cases where the maternal cell contamination studies (MCC) are done by a local genetic laboratory. Read more.

Genes in the Premature Ovarian Failure Panel and their clinical significance
GeneAssociated phenotypesInheritanceClinVarHGMD
CYP17A1Adrenal hyperplasia, congenital, due to 17-alpha-hydroxylase deficiencyAR32123
CYP19A1Aromatase deficiencyAR1471
FOXL2Premature ovarian failure, Blepharophimosis, epicanthus inversus, and ptosisAD69203
FSHROvarian dysgenesis, Ovarian hyperstimulation syndromeAD/AR1634
GALTGalactosemiaAR239319
GNASMcCune-Albright syndrome, Progressive osseous heteroplasia, Pseudohypoparathyroidism, Albright hereditary osteodystrophyAD45257
LHCGRPrecocious puberty, male, Leydig cell hypoplasia, Luteinizing hormone resistance, femaleAR2868
LMNAHeart-hand syndrome, Slovenian, Limb-girdle muscular dystrophy, Muscular dystrophy, congenital, LMNA-related, Lipodystrophy (Dunnigan), Emery-Dreiffus muscular dystrophy, Malouf syndrome, Dilated cardiomyopathy (DCM), Mandibuloacral dysplasia type A, Progeria Hutchinson-Gilford typeAD/AR183458
NR5A1Adrenocortical insufficiency, Premature ovarian failure, 46,XY sex reversalAD/AR21137
POLGPOLG-related ataxia neuropathy spectrum disorders, Sensory ataxia, dysarthria, and ophthalmoparesis, Alpers syndrome, Progressive external ophthalmoplegia with mitochondrial DNA deletions, Mitochondrial DNA depletion syndromeAD/AR71265
PORDisordered steroidogenesis due to cytochrome p450 oxidoreductase deficiency, Antley-Bixler syndromeAR1284
STARLipoid adrenal hyperplasiaAR1577
WT1Denys-Drash syndrome, Frasier syndrome, Wilms tumorAD23165

Gene, refers to HGNC approved gene symbol; Inheritance to inheritance patterns such as autosomal dominant (AD), autosomal recessive (AR) and X-linked (XL); ClinVar, refers to a number of variants in the gene classified as pathogenic or likely pathogenic in ClinVar (http://www.ncbi.nlm.nih.gov/clinvar/); HGMD, refers to a number of variants with possible disease association in the gene listed in Human Gene Mutation Database (HGMD, http://www.hgmd.cf.ac.uk/ac/). The list of associated (gene specific) phenotypes are generated from CDG (http://research.nhgri.nih.gov/CGD/) or Orphanet (http://www.orpha.net/) databases.

Blueprint Genetics offers a comprehensive premature ovarian failure panel that covers classical genes associated with aromatase deficiency, autosomal recessive and dominant progressive external ophtalmoplegias, blepharophimosis, ptosis, and epicanthus inversus syndrome (BPES), Malouf syndrome, ovarian hyperstimulation syndrome and premature ovarian failure. The genes are carefully selected based on the existing scientific evidence, our experience and most current mutation databases. Candidate genes are excluded from this first-line diagnostic test. The test does not recognise balanced translocations or complex inversions, and it may not detect low-level mosaicism. The test should not be used for analysis of sequence repeats or for diagnosis of disorders caused by mutations in the mitochondrial DNA.

Please see our latest validation report showing sensitivity and specificity for SNPs and indels, sequencing depth, % of the nucleotides reached at least 15x coverage etc. If the Panel is not present in the report, data will be published when the Panel becomes available for ordering. Analytical validation is a continuous process at Blueprint Genetics. Our mission is to improve the quality of the sequencing process and each modification is followed by our standardized validation process. All the Panels available for ordering have sensitivity and specificity higher than > 0.99 to detect single nucleotide polymorphisms and a high sensitivity for indels ranging 1-19 bp. The diagnostic yield varies substantially depending on the used assay, referring healthcare professional, hospital and country. Blueprint Genetics’ Plus Analysis (Seq+Del/Dup) maximizes the chance to find molecular genetic diagnosis for your patient although Sequence Analysis or Del/Dup Analysis may be cost-effective first line test if your patient’s phenotype is suggestive for a specific mutation profile. Detection limit for Del/Dup analysis varies through the genome from one to six exon Del/Dups depending on exon size, sequencing coverage and sequence content.

The sequencing data generated in our laboratory is analyzed with our proprietary data analysis and annotation pipeline, integrating state-of-the art algorithms and industry-standard software solutions. Incorporation of rigorous quality control steps throughout the workflow of the pipeline ensures the consistency, validity and accuracy of results. The highest relevance in the reported variants is achieved through elimination of false positive findings based on variability data for thousands of publicly available human reference sequences and validation against our in-house curated mutation database as well as the most current and relevant human mutation databases. Reference databases currently used are the 1000 Genomes Project (http://www.1000genomes.org), the NHLBI GO Exome Sequencing Project (ESP; http://evs.gs.washington.edu/EVS), the Exome Aggregation Consortium (ExAC; http://exac.broadinstitute.org), ClinVar database of genotype-phenotype associations (http://www.ncbi.nlm.nih.gov/clinvar) and the Human Gene Mutation Database (http://www.hgmd.cf.ac.uk). The consequence of variants in coding and splice regions are estimated using the following in silico variant prediction tools: SIFT (http://sift.jcvi.org), Polyphen (http://genetics.bwh.harvard.edu/pph2/), and Mutation Taster (http://www.mutationtaster.org).

Through our online ordering and statement reporting system, Nucleus, the customer can access specific details of the analysis of the patient. This includes coverage and quality specifications and other relevant information on the analysis. This represents our mission to build fully transparent diagnostics where the customer gains easy access to crucial details of the analysis process.

In addition to our cutting-edge patented sequencing technology and proprietary bioinformatics pipeline, we also provide the customers with the best-informed clinical report on the market. Clinical interpretation requires fundamental clinical and genetic understanding. At Blueprint Genetics our geneticists and clinicians, who together evaluate the results from the sequence analysis pipeline in the context of phenotype information provided in the requisition form, prepare the clinical statement. Our goal is to provide clinically meaningful statements that are understandable for all medical professionals, even without training in genetics.

Variants reported in the statement are always classified using the Blueprint Genetics Variant Classification Scheme modified from the ACMG guidelines (Richards et al. 2015), which has been developed by evaluating existing literature, databases and with thousands of clinical cases analyzed in our laboratory. Variant classification forms the corner stone of clinical interpretation and following patient management decisions. Our statement also includes allele frequencies in reference populations and in silico predictions. We also provide PubMed IDs to the articles or submission numbers to public databases that have been used in the interpretation of the detected variants. In our conclusion, we summarize all the existing information and provide our rationale for the classification of the variant.

A final component of the analysis is the Sanger confirmation of the variants classified as likely pathogenic or pathogenic. This does not only bring confidence to the results obtained by our NGS solution but establishes the mutation specific test for family members. Sanger sequencing is also used occasionally with other variants reported in the statement. In the case of variant of uncertain significance (VUS) we do not recommend risk stratification based on the genetic finding. Furthermore, in the case VUS we do not recommend use of genetic information in patient management or genetic counseling. For some cases Blueprint Genetics offers a special free of charge service to investigate the role of identified VUS.

We constantly follow genetic literature adapting new relevant information and findings to our diagnostics. Relevant novel discoveries can be rapidly translated and adopted into our diagnostics without delay. These processes ensure that our diagnostic panels and clinical statements remain the most up-to-date on the market.

Find more info in Support
Download PDF

Full service only

Choose an analysis method

$ $ 1400
$ $ 1000
$ $ 1600

Extra services

$ 500
Total $
Order now

ICD & CPT codes

CPT codes

SEQ81479
DEL/DUP81479


ICD codes

Commonly used ICD-10 codes when ordering the Premature Ovarian Failure Panel

ICD-10Disease
E28.3Premature ovarian failure

Accepted sample types

  • EDTA blood, min. 1 ml
  • Purified DNA, min. 5μg
  • Saliva (Oragene DNA OG-500 kit)

Label the sample tube with your patient’s name, date of birth and the date of sample collection.

Note that we do not accept DNA samples isolated from formalin-fixed paraffin-embedded (FFPE) tissue.

Subscribe to our newsletter